Exam - Statistics (WBMA009-05) 2023/2024

Date and time: November 8, 2023, 18.15-20.15h

Place: Exam Hall 2, Blauwborgje 4

Rules to follow:

- This is a closed book exam. Consultation of books and notes is **not** permitted. You can use a simple (non-programmable) calculator.
- Write your name and student number onto each paper sheet. There are 4 exercises and you can reach 90 points. ALWAYS include the relevant equation(s) and/or short derivations.
- We wish you success with the completion of the exam!

START OF EXAM

1. Asymptotic confidence intervals and tests. 30 Consider a random sample X_1, \ldots, X_n from a Negative Binomial distribution with known parameter $r \in \mathbb{N}$ and unknown probability parameter $\theta \in (0, 1)$. Recall that the density and the expectation of a Negative Binomial are

$$f(x) = {x + r - 1 \choose x} \cdot (1 - \theta)^r \cdot \theta^x \quad (x \in \mathbb{N}_0), \qquad E[X] = \frac{\theta r}{1 - \theta}$$

- (a) $\boxed{5}$ Show that the ML estimator of θ is: $\hat{\theta}_{ML} = \bar{X}/(r+\bar{X})$, where $\bar{X} := \frac{1}{n}\sum_{i=1}^{n}X_{i}$. It suffices to show that the 1st derivative of the log-likelihood is equal to zero.
- (b) 5 Show that the expected Fisher information (for sample size 1) is

$$I(\theta) = \frac{r}{\theta \cdot (1 - \theta)^2}$$

From now on we assume that r=2, n=20 and that $\bar{X}=8$ has been observed.

- (c) 10 Make use of the asymptotic efficiency of the ML estimator and give a one-sided asymptotic 95% confidence interval $(-\infty, U]$ for θ .
- (d) 10 Check whether a score-test to the level $\alpha = 0.02$ would reject the null hypothesis $H_0: \theta = 0.9$ in favour of the alternative $H_1: \theta \neq 0.9$.

<u>HINT 1</u>: Score test: $\frac{d}{d\theta}l_X(\theta)/\sqrt{n\cdot I(\theta)}$ is asymptotically N(0,1) distributed.

1

HINT 2: You can use the approximate quantiles provided in Table 1.

2. Linear regression. 30

Assume that we have n two-dimensional data points of the form:

$$(Y_1, x_1), ..., (Y_n, x_n)$$

where Y_1, \ldots, Y_n are n independently (but not identically) Gaussian distributed random variables. Each random variable Y_i is accompanied by a non-random 'covariate' value $x_i \in \mathbb{R}$ that has an effect on the expectation of Y_i in the following way:

$$Y_i \sim \mathcal{N}(\theta \cdot x_i, 1), \quad (i = 1, \dots, n)$$

where $\theta \in \mathbb{R}$ is an unknown parameter.

(a) 10 Show that the Maximum Likelihood estimator $\hat{\theta}_{ML}$ of θ is given by

$$\hat{\theta}_{ML} = \frac{\sum\limits_{i=1}^{n} x_i Y_i}{\sum\limits_{i=1}^{n} x_i^2}$$

It suffices to show that the 1st derivative of the log-likelihood is equal to zero.

(b) $\boxed{5}$ Show that the ML estimator from (a) is unbiased estimator of θ and that its variance is given by:

$$V(\hat{\theta}_{ML}) = \left(\sum_{i=1}^{n} x_i^2\right)^{-1}$$

(c) 5 We have that:

$$\hat{\theta}_{ML} \sim \mathcal{N}\left(\theta, \ \left(\sum_{i=1}^{n} x_i^2\right)^{-1}\right)$$

Use this to specify a statistical level α test for the two-sided test problem:

$$H_0: \theta = \theta_0 \quad \underline{\text{versus}}: \quad H_1: \theta \neq \theta_0$$

Give the test statistic, the rejection region and the decision rule.

2

(d) $\boxed{10}$ Now assume that the data fulfil:

$$\sum_{i=1}^{n} x_i y_i = 27$$

$$\sum_{i=1}^{n} x_i^2 = 81$$

Give an exact 95% confidence interval for θ .

 $\underline{\mathbf{HINT}} :$ You can use the quantiles provided in Table 1.

α	0.5	0.75	0.9	0.95	0.975	0.99	0.99997
q_{α}	0	0.7	1.3	1.6	2	2.3	4

Table 1: Approximate quantiles q_{α} of the $\mathcal{N}(0,1)$ distribution.

3. Sufficient statistic and UMP test. 15

Consider a random sample

$$X_1,\ldots,X_n \sim \mathcal{F}(\theta)$$

from a distribution with sample space $S=\mathbb{R}^+$ that depends on a parameter $\theta>0$ and whose density is:

$$f_{\theta}(x) = \frac{1}{2} \cdot \theta^3 \cdot x^2 \exp\{-x\theta\} \qquad (x > 0)$$

- (a) $\boxed{5}$ Give a sufficient statistic for θ .
- (b) 10 Consider the simple test problem

$$H_0: \theta = 4$$
 vs. $H_1: \theta = 2$

Show that a statistical test that rejects H_0 if $\sum_{i=1}^n X_i > k_0$, where $k_0 > 0$ is a constant, is the UMP test for the above test problem.

4. Test level, power and p-value of a statistical test. $\boxed{15}$

Consider a random sample of size n from a Gaussian distribution with known variance parameter $\sigma^2 = 4$:

$$X_1,\ldots,X_n \sim \mathcal{N}(\mu,4)$$

and the simple test problem

$$H_0: \mu = 0$$
 vs. $H_1: \mu = -0.54$

The null hypothesis is rejected when $\bar{x}_n \leq -0.4$.

- (a) $\boxed{5}$ Given sample size n = 100, what is the test level?
- (b) $\boxed{5}$ Given sample size n = 100, what is the power of the test?
- (c) $\boxed{5}$ How large must n be to obtain the power 0.9?

HINT: For solving this exercise use the approximate quantiles provided in Table 1.

3